p-Laplacian problems with critical Sobolev exponent

نویسنده

  • Giampiero Palatucci
چکیده

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

The fibering map approach to a quasilinear degenerate p(x)-Laplacian equation

‎By considering a degenerate $p(x)-$Laplacian equation‎, ‎a generalized compact embedding in weighted variable‎ ‎exponent Sobolev space is presented‎. ‎Multiplicity of positive solutions are discussed by applying fibering map approach for the‎ ‎corresponding Nehari manifold‎. 

متن کامل

On a Picone's identity for the $mathcal{A}_{p(x)}$-Laplacian and its applications

‎We present a Picone's identity for the‎ ‎$mathcal{A}_{p(x)}$-Laplacian‎, ‎which is an extension of the classic‎ ‎identity for the ordinary Laplace‎. ‎Also‎, ‎some applications of our‎ ‎results in Sobolev spaces with variable exponent are suggested.

متن کامل

Existence of solution to a critical trace equation with variable exponent

In this paper we study sufficient local conditions for the existence of non-trivial solution to a critical equation for the p(x)−Laplacian where the critical term is placed as a source through the boundary of the domain. The proof relies on a suitable generalization of the concentration–compactness principle for the trace embedding for variable exponent Sobolev spaces and the classical mountain...

متن کامل

Three solutions to a p(x)-Laplacian problem in weighted-variable-exponent Sobolev space

In this paper, we verify that a general p(x)-Laplacian Neumann problem has at least three weak solutions, which generalizes the corresponding result of the reference [R. A. Mashiyev, Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent, Arab. J. Sci. Eng. 36 (2011) 1559-1567].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2011